CBTC Cutover Strategies - Big Bang

The cutover from a conventional to a CBTC signalled system is a radical shift for any Transit Operator. New training methods, new maintenance capabilities, new operational procedures; the entire organization changes gears at the same time and this transition is the most vulnerable point for a Transit Operator. At the flick of a switch, the entire organization must switch and the cutover strategy determines how smooth the transition is.

A cutover strategy defines how the Operator will physically switch from their current signaling system (usually conventional) to CBTC. The cutover strategy has no impact on operations once the system is fully cutover but, if the strategy is not planned, the CBTC rollout will be cumbersome for the Operator and the riding public.

There are three basic strategies to cutover a signalling system:

  • Big Bang

  • Phase Cutover

  • Fallback Leading to CBTC

In this post, I cover the big bang approach.

Big Bang

As the name implies, on a Friday before the cutover weekend, the line is running under conventional signalling and on Monday, the day after cutover weekend, the line is running under CBTC signalling.

Figure 1 - Big bang cutover

Figure 1 – Big bang cutover

The big bang approach requires a high degree of confidence the solution will perform almost flawlessly once deployed but, as is the case with any beta software, bugs always surface. Nevertheless, this is a valid approach and it has its advantages if the Operator can tolerate the disadvantages.


When the big bang approach is utilized, the legacy signalling equipment is taken offline (decommissioned) and the CBTC equipment is brought online, except for the switch machines.

During the cutover, the switch machines transition from the legacy system to the CBTC system; therefore, a cutover cubicle is required to make this transition smooth (Figure 35). The cutover cubicle allows the legacy system to control the switch machine then switchover to allow the CBTC system to control the switch machine. Any other legacy equipment required by the CBTC system will require a similar cutover cubicle.

Figure 35.png

Figure 2 - Big bang cutover approach before the cutover occurs

After the cutover:

  • The ATS bypasses the panel

  • The wayside bypasses the relay racks

  • The VC takes control of the trains

  • The data communication system (DCS) connects all subsystems together 

By the end of the weekend, the CBTC system would take control of Service for the start of Monday rush hour.

The legacy equipment would remain until a good time is found for it to be removed.

Figure 36.png

 Figure 3 - Big bang approach after the cutover


The big bang approach is straightforward but it has its limitations as well as its advantages:


  • Best for small lines, 5km to 10km where is there is little equipment to cutover.

  • Temporary designs for the cutover are kept to a bare minimum such as cutover cubicles.

  • Logistically simple in the sense that the signals are bagged, trip stops are tied down and the switch machine is cutover.


  • If there are problems with the software logic, the entire line may be affected.

  • Workforce needed for this cutover is large depending on the length of the track.

In the next post, I will discuss the phased cutover approach.

CBTC Diagnostics – Poor Design Equals Angry Commuters

CBTC Diagnostics – Poor Design Equals Angry Commuters

Experienced CBTC Transit Operators keep a laser focus on their diagnostic design because the time it takes for the Operator to identify a problem, localize the problem and fix it is determined by the diagnostics capabilities of the CBTC solution. 

Sophisticated diagnostics enable the Operator to recovery from failure quickly whereas rudimentary diagnostics delay recovery while commuters are stuck on the track.

How Does an Operator Recover a Failed CBTC Train - Part 1

How Does an Operator Recover a Failed CBTC Train - Part 1

Train recovery is a critical function because it defines how the Operator will recover a failed train under a worst-case failure. If the CBTC design can handle the worst-case scenario, then all other train recovery scenarios are taken care of automatically.

A stranded train due to communication failure is a rare event due to the built-in redundancy all CBTC solutions provide, nonetheless the CBTC solution must have a design in place to recover from this rare event.

Work Zones - The Forgotten CBTC Function

Work Zones - The Forgotten CBTC Function

Given that all railroad properties are under constant maintenance, creating a safe corridor for workers at track level, while maintaining service through the work zone is a critical concern for Operators.

In a CBTC application, work zones take on greater importance because the trains are either driverless or operating in an automated mode with a train Operator. If a CBTC train enters an area with workers, the train will not stop; it will continue to move at the same speed. There must be a vital mechanism to inform the CBTC system of workers at track level.

Which CBTC Functions should Operators Focus On? Core or Non-core Functions?

Which CBTC Functions should Operators Focus On?  Core or Non-core Functions?

Operationally critical functions must be understood when deploying a CBTC solution. These functions define how a railroad operates once the solution is deployed and if neglected the Operator can expect service disruptions, longer recovery times and irate commuters. Laser-focus on the CBTC solution’s operational functions will ensure that the operational requirements of the Operator are satisfied.

Planning to Deploy A CBTC Solution? Avoid this Mistake

Planning to Deploy A CBTC Solution? Avoid this Mistake

Transit authorities planning to transition from conventional to CBTC signaling must treat the depot and mainline as a single entity; otherwise the boundary becomes a barrier for launching trains into service. The barrier results from CBTC and conventional signalling speaking different languages; a simplified interface will lose something in translation, preventing a seamless handover of a train from depot to mainline.

Transit agencies planning to deploy a CBTC solution must be mindful that a CBTC solution is effective only when it has control over all aspects that affect mainline operations. The time it takes to launch trains from the depot is also a factor because it compromises the throughput on the mainline. Non-CBTC actors, such as a conventionally signalled depot, hinder a CBTC solution’s ability to control the flow of trains on the mainline, reducing the advantages CBTC was meant to introduce.

Implementing a CBTC solution on the mainline and leaving the depot conventionally signalled is a mistake.

CBTC and Fallback Mode of Operation – Who Needs It!

CBTC and Fallback Mode of Operation – Who Needs It!

Fallback mode in a CBTC application, is a legitimate mode of operation but avoid it when possible. The cost of implementing a fallback mode will outweigh the marginal benefits that fallback will provide: increased complexity, increased maintenance cost and up to 30% increase in capital costs. Yet some operators handcuff their solution by imposing a fallback mode requirement without understanding the need.

The operating environment ultimately determines if fallback mode is required and which of the multiple options is selected. The operator must take a methodical approach when evaluating the need for fallback because the consequence of making the wrong decision are costly.

CBTC vs Conventional Signalling - Which is Safer?

CBTC vs Conventional Signalling - Which is Safer?

The safety record for conventional signaling is beyond doubt; 140 years of improvements, handed down by thousands of engineers has ensured the safety of our urban transit infrastructure.

However, transit authorities are switching to CBTC in increasing numbers and the primary motivation is due to the operational superiority, not safety, of a CBTC solution over a conventional one.

CBTC shines because it pushes the operational envelope (shorter headways) while maintaining the proper level of safety. Whereas a conventional system is handcuffed operationally due to its inherent limitations (fixed block signalling philosophy).

What is Positional Uncertainty in CBTC Applications?

What is Positional Uncertainty in CBTC Applications?

The positional accuracy of a GPS depends on the environment it’s operating in; if six satellites are in the sky on a clear sunny day in the countryside, the positional accuracy will be high. But if there is a thunderstorm in the area with only 3 satellites in the middle of a metropolis, the positional accuracy diminishes. Pinpoint accuracy requires ideal conditions.

Similarly, a CBTC train’s ability to report an accurate position depends on the design of the train and the track it’s running on. Train parameters and track characteristics must be understood and controlled to reduce positional uncertainty; otherwise the train cannot be tracked nor can it be protected.

Safe Braking Model Explained

Safe Braking Model Explained

During my teenage years, my driving instructor taught me the three second rule; the minimum separation between my car and the car in front had to be three seconds. He drilled this rule into my head, but a rule for cars does not translate well when driving a fifty ton train at 60 km/h around a blind curve. Something a little more sophisticated is required.

The equivalent guideline in the conventional signalling world is the “one block separation” rule; the distance separating two trains must be one block. This 150 year old practice ensures that if a train is tripped there is enough distance to stop the train.

Moving Block vs Fixed Block - Which is Better?

Moving Block vs Fixed Block - Which is Better?

Traditional fixed block signalling grew out of the invention of the track circuit which gave the signalling community its first failsafe method of detecting the presence of a train. This method has served the signalling community well for the past 150 years but as the population of major urban centers grow, the demands on transit operators also grow.

In the past, signal engineers included a margin in their fixed block design which allowed the operator to increase the frequency of service, but many cities have exhausted this margin or are fast approaching it.

As a result the operators have two choices; build more subway lines or squeeze more out of their existing infrastructure by adapting new technologies; such as moving block based on CBTC technologies.

Tracking Trains Without Track Circuits

Tracking Trains Without Track Circuits

Tracking trains using track circuits has been the conventional wisdom for the past 150 years. No single invention in the history of rail has contributed more towards safety then the track circuit. This simple invention is the foundation for block signalling and the primary method of tracking trains through a mass transit system.

However, over the past 30 years CBTC technologies have rendered this foundational component obsolete. Therefore, how does a CBTC system track trains without track circuits?

What is CBTC? (IEEE 1474.1)

What is CBTC? (IEEE 1474.1)

On a short stretch of track in London, William Robert Sykes tested the first track circuit at Brixton in 1864. In 1872, William Robinson invented the first fail safe track circuit and a method of block occupancy detection was born. 140 years later, block occupancy detection using track circuits (or conventional signalling) is still in use today.

Over the past 25 years the tide is changing as CBTC solutions find their way into traditional track circuit based applications. The primary advantage of a CBTC system is its ability to allow trains to operate safely at much closer headways then is possible in a track circuit based application due to its inherent limitation.